import logging
import numpy as np
from mpi4py import MPI
from pylops import Identity
from pylops.signalprocessing import FFT, Fredholm1
from pylops_mpi import MPILinearOperator
from pylops_mpi.signalprocessing.Fredholm1 import MPIFredholm1
def _MDC(G, nt, nv, nfmax, dt=1., dr=1., twosided=True,
saveGt=True, conj=False, prescaled=False,
base_comm=MPI.COMM_WORLD,
_Identity=Identity, _FFT=FFT,
_Fredholm1=Fredholm1, args_Identity={},
args_FFT={}, args_Identity1={},
args_FFT1={}, args_Fredholm1={}):
r"""Multi-dimensional convolution.
Used to be able to provide operators from different libraries to
MDC. It operates in the same way as public method
(PoststackLinearModelling) but has additional input parameters allowing
passing a different operator and additional arguments to be passed to such
operator.
"""
if twosided and nt % 2 == 0:
raise ValueError('nt must be odd number')
# find out dtype of G
dtype = G[0, 0, 0].dtype
rdtype = np.real(np.ones(1, dtype=dtype)).dtype
# create Fredholm operator
if prescaled:
Frop = _Fredholm1(G, nv, saveGt=saveGt,
base_comm=base_comm,
dtype=dtype, **args_Fredholm1)
else:
Frop = _Fredholm1(dr * dt * np.sqrt(nt) * G, nv,
saveGt=saveGt, base_comm=base_comm,
dtype=dtype, **args_Fredholm1)
if conj:
Frop = Frop.conj()
# create FFT operators
_, ns, nr = G.shape
# ensure that nfmax is not bigger than allowed
nfft = int(np.ceil((nt + 1) / 2))
if nfmax > nfft:
nfmax = nfft
logging.warning('nfmax set equal to ceil[(nt+1)/2=%d]' % nfmax)
Fop = MPILinearOperator(_FFT(dims=(nt, nr, nv), axis=0, real=True,
ifftshift_before=twosided, dtype=rdtype, **args_FFT))
F1op = MPILinearOperator(_FFT(dims=(nt, ns, nv), axis=0, real=True,
ifftshift_before=False, dtype=rdtype, **args_FFT1))
# create Identity operator to extract only relevant frequencies
Iop = MPILinearOperator(_Identity(N=nfmax * nr * nv, M=nfft * nr * nv,
inplace=True, dtype=dtype, **args_Identity))
I1op = MPILinearOperator(_Identity(N=nfmax * ns * nv, M=nfft * ns * nv,
inplace=True, dtype=dtype, **args_Identity1))
F1opH = F1op.H
I1opH = I1op.H
# create MDC operator
MDCop = F1opH * I1opH * Frop * Iop * Fop
# force dtype to be real (as FFT operators assume real inputs and outputs)
MDCop.dtype = rdtype
return MDCop
[docs]
def MPIMDC(G, nt, nv, nfreq, dt=1., dr=1., twosided=True,
fftengine='numpy',
saveGt=True, conj=False,
usematmul=False, prescaled=False,
base_comm: MPI.Comm = MPI.COMM_WORLD):
r"""Multi-dimensional convolution.
Apply multi-dimensional convolution between two datasets. Model and data
should be provided after flattening 2- or 3-dimensional arrays of size
:math:`[n_t \times n_r (\times n_{vs})]` and
:math:`[n_t \times n_s (\times n_{vs})]` (or :math:`2*n_t-1` for
``twosided=True``), respectively.
Parameters
----------
G : :obj:`numpy.ndarray`
Multi-dimensional convolution kernel in frequency domain of size
:math:`[n_{fmax} \times n_s \times n_r]`
nt : :obj:`int`
Number of samples along time axis for model and data (note that this
must be equal to ``2*n_t-1`` when working with ``twosided=True``.
nv : :obj:`int`
Number of samples along virtual source axis
dt : :obj:`float`, optional
Sampling of time integration axis
dr : :obj:`float`, optional
Sampling of receiver integration axis
twosided : :obj:`bool`, optional
MDC operator has both negative and positive time (``True``) or
only positive (``False``)
fftengine : :obj:`str`, optional
Engine used for fft computation (``numpy`` or ``fftw``)
saveGt : :obj:`bool`, optional
Save ``G`` and ``G^H`` to speed up the computation of adjoint of
:class:`pylops.signalprocessing.Fredholm1` (``True``) or create
``G^H`` on-the-fly (``False``) Note that ``saveGt=True`` will be
faster but double the amount of required memory
conj : :obj:`str`, optional
Perform Fredholm integral computation with complex conjugate of ``G``
usematmul : :obj:`bool`, optional
Use :func:`numpy.matmul` (``True``) or for-loop with :func:`numpy.dot`
(``False``) in :py:class:`pylops.signalprocessing.Fredholm1` operator.
Refer to Fredholm1 documentation for details.
prescaled : :obj:`bool`, optional
Apply scaling to kernel (``False``) or not (``False``) when performing
spatial and temporal summations. In case ``prescaled=True``, the
kernel is assumed to have been pre-scaled when passed to the MDC
routine.
base_comm : :obj:`mpi4py.MPI.Comm`, optional
MPI Base Communicator. Defaults to ``mpi4py.MPI.COMM_WORLD``.
Raises
------
ValueError
If ``nt`` is even and ``twosided=True``
See Also
--------
MDD : Multi-dimensional deconvolution
Notes
-----
The so-called multi-dimensional convolution (MDC) is a chained
operator [1]_. It is composed of a forward Fourier transform,
a multi-dimensional integration, and an inverse Fourier transform:
.. math::
y(t, s, v) = \mathscr{F}^{-1} \Big( \int_S G(f, s, r)
\mathscr{F}(x(t, r, v)) dr \Big)
which is discretized as follows:
.. math::
y(t, s, v) = \mathscr{F}^{-1} \Big( \sum_{i_r=0}^{n_r}
(\sqrt{n_t} * d_t * d_r) G(f, s, i_r) \mathscr{F}(x(t, i_r, v)) \Big)
where :math:`(\sqrt{n_t} * d_t * d_r)` is not applied if ``prescaled=True``.
This operation can be discretized and performed by means of a
linear operator
.. math::
\mathbf{D}= \mathbf{F}^H \mathbf{G} \mathbf{F}
where :math:`\mathbf{F}` is the Fourier transform applied along
the time axis and :math:`\mathbf{G}` is the multi-dimensional
convolution kernel.
.. [1] Wapenaar, K., van der Neut, J., Ruigrok, E., Draganov, D., Hunziker,
J., Slob, E., Thorbecke, J., and Snieder, R., "Seismic interferometry
by crosscorrelation and by multi-dimensional deconvolution: a
systematic comparison", Geophysical Journal International, vol. 185,
pp. 1335-1364. 2011.
"""
return _MDC(G, nt, nv, nfreq, dt=dt, dr=dr, twosided=twosided,
saveGt=saveGt, conj=conj, prescaled=prescaled,
base_comm=base_comm,
_Fredholm1=MPIFredholm1,
args_FFT={"engine": fftengine},
args_FFT1={"engine": fftengine},
args_Fredholm1={'usematmul': usematmul})